Identification of Basic Fibroblast Growth Factor as the Dominant Protector of Laminar Shear Medium from the Modified Shear Device in Tumor Necrosis Factor-α Induced Endothelial Dysfunction
نویسندگان
چکیده
Background and Aims: Endothelial dysfunction is a hallmark of cardiovascular diseases. The straight region of an artery is protected from atherosclerosis via its laminar blood flow and high shear stress. This study investigated the cytoprotective effects of a new laminar shear medium (LSM) derived from a modified cone-and-plate shear device and identified basic fibroblast growth factor (bFGF) secreted by human aortic endothelial cells (HAECs) as the dominant protective factor in the LSM. Methods: Based on a modified cone-and-plate shear device system, HAECs were exposed to laminar shear (15 dynes/cm2) and static control for 24 h to produce a new supernatant LSM and static medium (SM). Evaluation of the protective effects of LSM and SM on endothelial dysfunction induced by tumor necrosis factor (TNF)-α (10 ng/mL), which leads to production of reactive oxygen species (ROS), inflammatory monocyte adhesion, and tissue factor activity. ROS induction-, inflammation-, and thrombosis-related genes and protein expression were evaluated by quantitative-PCR and western blotting. To identify the cytokines that played a key role in the cytoprotective action of the LSM, we used cytokine antibody arrays, selected an abundant marker cytokine, bFGF, and validated the different cytoprotective effects of recombinant bFGF (rbFGF) and neutralization by monoclonal antibody (rbFGF+Ab) co-treatment. Aortic and lung tissues from different groups of C57BL/6J mice were examined by immunohistochemistry. SB203580 (specific inhibitor of p38) and BIX02189 (specific inhibitor of MEK5) were used to identify bFGF as the main cytoprotective factor acting via p38/MAPK and MEK5-KLF2 pathways. Results: Compared with traditional LSM, the new LSM not only significantly decreased TNF-α-induced intracellular adhesion molecule 1 and plasminogen activator inhibitor type 1 gene expression, but also significantly increased heme oxygenase 1 gene expression. The new LSM and bFGF attenuated TNF-α-induced ROS induction, inflammation, and tissue factor activity and inhibited the inflammatory- and thrombosis-related gene/protein overexpression both in vitro and in vivo. Mechanistically, the cytoprotective action of bFGF was mediated via the p38/MAPK and MEK5-KLF2 pathways. Conclusion: bFGF was identified as the critical factor mediating the cytoprotective effects of LSM derived from the modified laminar shear system.
منابع مشابه
The Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats
Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...
متن کاملEffects of fluid shear stress on the expression of Omi/HtrA2 in human umbilical vein endothelial cells.
To investigate the molecular mechanisms of laminar shear stress on the inhibition of apoptosis in endothelial cells, human umbilical vein endothelial cells (HUVECs) were starved in medium containing 2% fetal bovine serum (FBS) and treated with 15 dyne/cm2 shear stress. We confirmed that 15 dyne/cm2 shear stress inhibited the expression of Omi/HtrA2 at the mRNA and protein levels in cultured HUV...
متن کاملShear stress induces the release of an endothelial elastase: role in integrin α(v)β(3)-mediated FGF-2 release.
BACKGROUND/AIMS Laminar shear stress is an important stimulus in the endothelium-dependent control of vascular tone and of vascular remodeling processes. Based on previous studies demonstrating integrin-mediated release of fibroblast growth factor 2 (FGF-2), we investigated whether shear stress-induced integrin activation requires the involvement of an extracellular protease. METHODS Cultured...
متن کاملEffects of Fluid Shear Stress on Expression of Smac/DIABLO in Human Umbilical Vein Endothelial Cells☆
OBJECTIVE To investigate the molecular mechanisms of laminar shear stress on inhibition of apoptosis in endothelial cells, human umbilical vein endothelial cells (HUVECs) were starved in medium containing 2% fetal bovine serum and 20 dyne/cm(2) shear stress. METHODS HUVECs were subjected to shear stress or incubated in a static condition and then Smac/DIABLO expression was quantified by rever...
متن کاملPulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells.
The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined shear stress, producing a constant laminar flow (generating a shear stress of 6 dyne/cm(2)), laminar p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017